张凌

 

1.    基本信息

image.png

姓名:张凌

性别:男

职称:副研究员

学历:博士

职务:无

邮箱:zhanglingky@lzb.ac.cn

通讯地址:甘肃省兰州市城关区东岗西路320号

2.    个人简介

张凌,博士,中国科学院西北生态环境资源研究院副研究员,硕士研究生导师,曾入选中国科学院“特聘骨干”研究岗位、中科院西北院“西部突出贡献人才”计划。主要从事遥感及水文水资源方面的研究,(1)提出了双机器学习算法,实现了多源遥感降水与地面观测的融合,系统评估了多源遥感降水产品及其对山区水文模拟的应用价值;(2)发展了基于并行计算的分布式模型标定方法,提升遥感产品和径流观测对水文模型的综合校准能力;成功将显式与隐式相结合的数值计算方法引入到分布式水文模型,解决了传统数值差分方法计算效率问题;(3)证实了“灌溉效率悖论“的存在,并利用农业-水-经济模型,研究了避免节水灌溉效率悖论发生的途径。以第一作者和通讯作者发表SCI论文16篇,其中包括领域顶级(Top)期刊10篇 ,主持国家自然科学基金面上项目1项,青年基金项目1项,中科院西部青年学者B类项目1项。

 

3.     研究方向

流域生态水文模拟;水文影响评价;遥感降水融合;灌溉模拟与反演

 

4.     工作履历

2020-04~现在, 中国科学院西北生态环境资源研究院, 副研究员

2017-07~2020-04, 中国科学院西北生态环境资源研究院, 助理研究员

 

5.     教育经历

2014-09--2017-07 中国科学院西北生态环境与资源研究院 博士

2011-09--2014-07 中国科学院寒区旱区环境与工程研究所 硕士

2007-09--2011-07 西华师范大学 学士

 

6.     科研项目

(1)国家自然科学基金委员会, 面上项目,源数据支持下的中国灌溉信息反演与重建研究,2023-01至2026-12, 主持

(2)国家自然科学基金委员会, 青年项目, 流域尺度典型节水灌溉方式的生态水文影响模拟研究, 2020-01至2022-12, 主持

(3)中国科学院, “西部之光”人才计划“西部青年学者” B类项目, 29Y929661,人类活动的水文影响分离和情景模拟—以黑河上游为例, 2019-01至2021-12, 主持

 

7.   学术兼职

担任国际期刊《Scientific Reports》编委

 

8.学术成果(论文、专著、专利等)

(1) Zhang Ling*, Zhang Kun, Zhu Xiufang, et al. Integrating remote sensing, irrigation suitability and statistical data for irrigated cropland mapping over mainland China. Journal of Hydrology, 2022, 613:128413

(2) Zhang Ling*, Zheng Donghai, Zhang Kun, et al. Divergent trends in irrigation-water withdrawal and consumption over mainland China. Environmental Research Letters, 2022, 17(9):94001.

(3) Li Xin*, Cheng Ggudong, Fu Bojie, Xia, Jun, Zhang Ling*, et al. Linking critical zone with watershed science: The example of the Heihe River basin. Earth's Future, 2022, e2022E.

(4) Zhang Ling*, Zhao Yanbo, Ma Qimin, et al. A parallel computing-based and spatially stepwise strategy for constraining a semi-distributed hydrological model with streamflow observations and satellite-based evapotranspiration. Journal of Hydrology, 2021, (599):126359.

(5) Zhang Ling*, Li Xin, Zheng Donghai, et al. Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. Journal of Hydrology, 2021:125969.

(6) Li Xin*, Zhang Ling*, Zheng Yi, et al. Novel hybrid coupling of ecohydrology and socioeconomy at river basin scale: A watershed system model for the Heihe River basin. Environmental Modelling & Software, 2021, 141:105058.

(7) Zhang Ling*, Li Xin, Cao Yanping, et al. Evaluation and integration of the top-down and bottom-up satellite precipitation products over mainland China. Journal of Hydrology, 2020:124456.

(8) Zhang Ling*, Ren D, et al., 2020, Interpolated or satellite-based precipitation? Implications for hydrological modeling in a meso-scale mountainous watershed on the Qinghai-Tibet Plateau. Journal of Hydrology, 2020. 583: 124629.

(9) Zhang Ling*. Comment on “Exploring the Influence of Smallholders’ Perceptions Regarding Water Availability on Crop Choice and Water Allocation Through Socio-Hydrological Modeling” by Kuil et al. [Water Resource Research, 54, 2580–2604], Water Resource Research, 2019, 55, 2532–2535.

(10) Zhang Ling*, Ma Q, Zhao Y, et al. Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways. Agricultural Water Management, 2019, 213:674-681.

(11) Zhang Ling, Nan Z, Liang X, et al. Application of the MacCormack scheme to overland flow routing for high-spatial resolution distributed hydrological model. Journal of Hydrology, 2018, 558:421-431.

(12) Zhang Ling*, Nan Z, Wang W, et al. Separating climate change and human contributions to variations in streamflow and its components using eight time-trend methods. Hydrological Processes, 2018,1-12.

(13) Zhang Ling, Nan Z, et al., 2018, Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed